

Institute for IIT-JAM I CSIR-NET/JRF I U-SET I GATE I JEST I TIFR I BARC

Dedicated to excellence...

(MATHEMATICAL METHODS)

PREVIOUS YEAR'S QUESTIONS WITH ANSWER (CHAPTER-WISE)

- MATRIX ALGEBRA
- **VECTOR ANALYSIS**
- **FOURIER SERIES**
- **ALGEBRA OF COMPLEX NUMBERS**
- **DIFFERENTIAL EQUATIONS**
- **OTHER QUESTIONS**

"We Believe In Quality Education"

MATRIX ALGEBRA

1.	Which of the following is INCORRECT for the matrix $M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.	
	(a) It is its own inverse(c) It is non-orthogonal	(b) It is its own transpose (d) It has eigen values ± 1
2.	The symmetric part of $P = \begin{pmatrix} a \\ b \end{pmatrix} (a - 2b)$ (a) $\begin{pmatrix} a^2 - 2 & ba - 1 \\ ba - 1 & b^2 - 2 \end{pmatrix}$ (b) $\begin{pmatrix} a(a - 2) & b \\ b & b^2 \end{pmatrix}$ (c) $\begin{pmatrix} a(a - 1) & b(a - 1) \\ b(a - 1) & b^2 \end{pmatrix}$ (d) $\begin{pmatrix} a(a - 2) & b(a - 1) \\ b(a - 1) & b^2 \end{pmatrix}$) is. [IIT-JAM 2006]
3.	$(x \ y) \begin{pmatrix} 5 & -7 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 15.$ The matrix equation of above represents (a) a circle of radius $\sqrt{15}$ (c) an ellipse of semi major axis 5	[IIT-JAM 2007] (b) an ellipse of semi major axis $\sqrt{5}$ (d) a hyperbola
4.	The product PQ of any two real, symmetric (a) Symmetric for all P and Q TER SI (c) Symmetric, if $PQ = QP$	ic matrices <i>P</i> and <i>Q</i> is. [IIT-JAM 2008] (b) Never symmetric (d) Anti-symmetric for all <i>P</i> and <i>Q</i>
5.	A matrix is given b $M = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix}$. The eigenvalues (a) Real and positive (c) Complex with modulus 1	genvalues of <i>M</i> are. [IIT-JAM 2010] (b) Purely imaginary with modulus 1 (d) Real and negative
6.	Given two $(n \times n)$ matrices \hat{P} and \hat{Q} is H Hermitian. Which one of the following co Hermitian matrix? (a) $\hat{P}\hat{Q}$ (b) $i\hat{P}\hat{Q}$	dermitian and \hat{Q} is skew (anti)- ombinations of \hat{P} and \hat{Q} is necessarily a [IIT-JAM 2011] (c) $\hat{P} + i\hat{Q}$ (d) $\hat{P} + \hat{Q}$

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919456774737 website:- www. www.careerspectra.in

Career Spectra 0 1 1 The inverse of the matrix $M = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ is. 7. **[IIT-JAM 2013]** $1 \ 0 \ 0$ (b) M^2 - I (c) I - M^2 -(a) M - I (d) I - M Where *I* is the identity matrix. 8. The trace of a 2 x 2 matrix is 4 and its determinant is 8. If one of the eigenvalues is 2(1+e), the other eigenvalue is. [IIT-JAM 2015] (b) 2(1+i)(a) 2(1-i)(d) (1 - 2i)(c) (1 + 2i)9. The eigenvalues of the matrix representing the following pair of linear equations x+iy=0ix + y = 0are [IIT-JAM 2016] (d) 1- i, 1 - i(b) 1- *i*, 1- *i* (c) 1. *i* (a) 1+i, 1+IFor the three matrices given below, which one of the choices is correct? $\sigma_1 =$ 10. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, [**IIT-JAM 2017**] (b) $\sigma_1 \sigma_2 = i \sigma_3$ (a) $\sigma_1 \sigma_2 = -i\sigma_3$ (c) $\sigma_1 \sigma_2 + \sigma_2 \sigma_1 = I$ (d) $\sigma_3 \sigma_2 = -i\sigma_1$ Let matrix $M = \begin{pmatrix} 4 & x \\ 6 & 9 \end{pmatrix}$. If det(M)=0, then 11. **[IIT-JAM 2018]** (b) *M* is invertible (a) *M* is symmetric (d) Its eigenvectors are orthogonal (c) one eigenvalue is 13 The eigenvalues of $\begin{pmatrix} 3 & i & 0 \\ -i & 3 & 0 \\ 0 & 0 & c \end{pmatrix}$ are. 12. [IIT-JAM 2019] (a) 2,4and 6 (b) 2*i*,4*i* and 6 (c) 2*i*,4and 8 (d) 0,4 and 8 VECTOR ANALYSIS

13. The equation of a surface of revolution is $z = \pm \sqrt{\frac{3}{2}x^2 + \frac{3}{2}y^2}$. The unit vector normal to the surface at the point $A\left(\sqrt{\frac{2}{3}}, 0, 1\right)$ is. [IIT-JAM 2010] (a) $\sqrt{\frac{3}{5}}\hat{\iota} + \frac{2}{\sqrt{10}}\hat{k}$ (b) $\sqrt{\frac{3}{5}}\hat{\iota} - \frac{2}{\sqrt{10}}\hat{k}$

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUNCONTACT:- +919045460409, +919456774737website:- www. www.careerspectra.in

Career Spectra

(c)
$$\sqrt{\frac{3}{5}}\hat{i} + \frac{2}{\sqrt{5}}\hat{k}$$
 (d) $\sqrt{\frac{3}{10}}\hat{i} + \frac{2}{\sqrt{10}}\hat{k}$

14. The line integral $\int_{A}^{B} \vec{F} \cdot d\vec{l}$, where $\vec{F} = \frac{x}{\sqrt{x^2 + y^2}} \hat{x} + \frac{x}{\sqrt{x^2 + y^2}} \hat{y}$, along the semi-circular path as shown in the figure below is. [IIT-JAM 2011]

(c) 2 (d) 4

15. If \vec{F} is a constant vector and \vec{r} is the position vector then $\vec{\nabla}(\vec{F},\vec{r})$ would be.

- (a) $(\vec{\nabla}.\vec{r})\vec{F}$ (b) \vec{F} (c) $(\vec{\nabla}.\vec{F})\vec{r}$ (d) $|\vec{r}|\vec{F}$
- 16. For vectors $\vec{a} = \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} 5\hat{k}$ and $\vec{c} = \hat{j} \hat{k}$, the vector product $\vec{a} \times (\vec{b} \times \vec{c})$ is. (a) In the same direction as \vec{c} (b) In the direction opposite to \vec{c} (c) In the same direction as \vec{b} (d) In the direction opposite to \vec{b}

17. If the surface integral of the field $\vec{A}(x, y, z) = 2\alpha x\hat{i} + \beta y\hat{j} - 3\gamma z\hat{k}$ over the closed surface of an arbitrary unit sphere is to be zero, then the relationship between α, β and γ is. (a) $\alpha + \beta/6 - \gamma = 0$ (b) $\alpha/3 + \beta/6 - \gamma/2 = 0$ (c) $\alpha/2 + \beta - \gamma/3 = 0$ (b) $\alpha/3 + \beta/6 - \gamma/2 = 0$ (c) $\alpha/2 + \beta - \gamma/3 = 0$

18. The line integral $\oint \vec{A} \cdot d\vec{l}$ of a vector field $\vec{A}(x, y) = \frac{1}{r^2}(-y\hat{i} + x\hat{j})$ where $r^2 = x^2 + y^2$ is taken around a square (see figure) of side of unit length and centered at (x_0, y_0) with $|x_0| > \frac{1}{2}$ and $|y_0| > \frac{1}{2}$. If the value of the integral is *L*, then

[IIT-JAM 2014]

(a) L depends on (x_0, y_0)

(a) -2

(b) *L* is independent of $(x_0, y_0) y$ and its value is -1

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919456774737 website:- www. www.careerspectra.in

Page | 4

(c) *L* is independent of (x₀, y₀) *y* and its value is 0
(d) *L* is independent of (x₀, y₀) *y* and its value is 2

19. Consider a vector field $\vec{F} = y\hat{\imath} + xz^3\hat{\jmath} - zy\hat{k}$. Let *C* be the circle $x^2 + y^3 = 4$ on the plane z = 2, oriented counter-clockwise. The value of the contour integral $\oint_C \vec{F} \cdot d\vec{r}$ is. [IIT-JAM 2015] (a) 28π (b) 4π (c) -4π (d) -28π

20. The tangent line to the curve $x^2 + xy + 5 = 0$ at (1,1) is represented by. [IIT-JAM 2016]

(a) $y = 3x - 2$	(b) $y = -3x + 4$
(c) $x = 3y - 2$	(d) $x = -3y + 4$

21. Consider a closed triangular contour traversed in counter-clockwise direction, as shown in the figure. The value of the integral $\oint \vec{F} \cdot \vec{dl}$ evaluated along this contour, for a vector field, $\vec{F} = y\hat{e}_x - x\hat{e}_y$, is $(\hat{e}_x, \hat{e}_y \text{ and } \hat{e}_z$ and unit vectors in Cartesian-coordinate system). [IIT-JAM 2016]

- 22. A hemispherical shell is placed on the x-y plane centered at the origin. For a vector Field $\vec{E} = (-y\hat{e}_x + x\hat{e}_y)/(x^2 + y^2)$, the value of the integral $\int_S (\vec{\nabla} \times \vec{E}) d\vec{a}$ over the hemispherical surface is..... π . (d \vec{a} is the elemental surface area, \hat{e}_x , \hat{e}_y and \hat{e}_z are unit vectors in Cartesian-coordinate system). [IIT-JAM 2016]
- 23. The integral of the vector $\vec{A}(\rho, \phi, z) = \frac{40}{\rho} \cos \phi \hat{\rho}$ (standard notation for cylindrical coordinates is used) over the volume of a cylinder of height L and radius R₀ is: [IIT-JAM 2017]

(a) $20\pi R_0 L(\hat{i} + \hat{j})$ (b) 0 (c) $40\pi R_0 L\hat{j}$ (c) $40\pi R_0 L\hat{i}$

24. The volume integral of the function $f(r, \theta, \phi) = r^2 \cos \theta$ over the region $\left(0 \le r \le 2, 0 \le \theta \le \frac{\pi}{3} \text{ and } 0 \le \phi \le 2\pi\right)$ is..... (Specify your answer upto two digits after the decimal point) [IIT-JAM 2017]

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUNCONTACT:- +919045460409, +919456774737website:- www. www.careerspectra.in

Career Spectra

[IIT-JAM 2018]

25. Let $f(x, y) = x^3 - 2y^3$. The curve along which $\nabla^2 f = 0$ is. (a) $x = \sqrt{2}y$ (b) x = 2y(c) $x = \sqrt{6}y$ (d) $x = \frac{-y}{2}$

26. A curve is given by $\vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$. The unit vector of the tangent to the curve at t =1 is. [IIT-JAM 2018]

(a)
$$\frac{\hat{i}+\hat{j}+k}{\sqrt{3}}$$
 (b) $\frac{\hat{i}+\hat{j}+k}{\sqrt{6}}$
(c) $\frac{\hat{i}+2\hat{j}+2\hat{k}}{3}$ (d) $\frac{\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{14}}$

27. If φ(x, y, z) is a scalar function which satisfies the Laplace equation, then the gradient of φ is.
 (a) Solenoidall and irrigational
 (b) Solenoidall but not irrotational

(c) Irrotational but not solenoid (d) Neither Solenoidall nor irrotational

28. A unit vector perpendicular to the plane containing $\vec{A} = \hat{i} + \hat{j} - 2\hat{k}$ and $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$ is. (a) $\frac{1}{\sqrt{26}}(-\hat{i} + 3\hat{j} - 4\hat{k})$ (b) $\frac{1}{\sqrt{19}}(-\hat{i} + 3\hat{j} - 3\hat{k})$ (d) $\frac{1}{\sqrt{26}}(-\hat{i} - \hat{j} - 3\hat{k})$

29. The gradient of scalar field S(x, y, z) has the following characteristic(s).

[IIT-JAM 2019]

- (a) Line integral of a gradient is path-independent
- (b) Closed line integral of a gradient is zero
- (c) Gradient of S is a measure of the maximum rate of change in the field S
- (d) Gradient of *S* is a scalar quantity
- **30.** The flux of the function $\vec{F} = (y^2)\hat{x} + (3xy z^2)\hat{y} + (4yz)\hat{z}$ passing through the surface ABC along \hat{n} is _____(Round off to 2 decimal places).

[IIT-JAM 2019]

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919456774737 website:- www. www.careerspectra.in

Page | 6

Career Spectra

FOURIER SERIES

- **31.** A periodic function can be expressed in a Fourier series of the form, $f(x) = \sum_{n=0}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$. The functions $f_1(x) = \cos^2 x$ and $f_2(x) = \sin^2 x$ are expanded in their respective Fourier series. If the coefficients for the first series are $a_n^{(1)}$ and $b_n^{(1)}$, and the coefficients for the second series are $a_n^{(2)}$ and $b_n^{(2)}$, then which of the following is correct? [IIT-JAM 2005] (a) $a_n^{(1)} = \frac{1}{2}$ and $b_n^{(2)} = \frac{-1}{2}$ (b) $b_2^{(1)} = \frac{1}{2}$ and $a_2^{(2)} = \frac{-1}{2}$ (c) $a_2^{(1)} = \frac{1}{2}$ and $a_2^{(2)} = \frac{-1}{2}$ (b) $b_2^{(1)} = \frac{1}{2}$ and $b_2^{(2)} = \frac{-1}{2}$
- 32. f(x) is a periodic function of x with a period of 2π . In the interval $-\pi < x < \pi$, f(x) is given by $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \sin x, & 0 < x < \pi \end{cases}$ In the expansion of f(x) as a Fourier series of sine and cosine functions, the coefficient of $\cos(2x)$ is. [IIT-JAM 2007]

(a)
$$\frac{2}{3\pi}$$
 (b) $\frac{1}{\pi}$ (c) 0 (a) $-\frac{2}{3\pi}$

33. In the Fourier series of the periodic function (shown in the figure) $f(x) = |\sin x| = \sum_{n=0}^{\infty} [\alpha_n \cos nx + \beta_n \sin nx]$. Which of the following coefficients are <u>[IIT-JAM 2009]</u>

- **34.** Given that f(1) = 1, f'(1) = 1, and f''(1) = 1, the value of f(1/2) is [IIT-JAM 2013] Ans.: 0.606
- **35.** The Fourier series for an arbitrary periodic function with period 2L, is given by $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$. For the particular periodic function shown in the figure the value of a_0 is. [IIT-JAM 2015]

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919456774737 website:- www. www.careerspectra.in

Page | 7

The coefficient of x^3 in the Taylor expansion of sin (sin x) around x = 0 is _____ 42. (Specify your answer upto two digits after the decimal point). [IIT-JAM 2018]

DIFFERENTIAL EQUATIONS

- The solution of the differential equation dz(x, y) + xz(x, y)dx + yz(x, y)dy = 0**43**. is [IIT-JAM 2013]
- Consider the equation $\frac{dy}{dx} = \frac{y^2}{x}$ with the boundary y(1) = 1. Out of the following **44**. the range of x in which y is real and finite is. [IIT-JAM 2015] (b) $-3 \le x \le 0$ (a) $-\infty \le x \le -3$ (c) $0 \le x \le 3$ (d) $3 < x < \infty$
- Consider the differential equation y'' + 2y' + y = 0. If y(0) = 0 and y'(0) = 1, **45**. then the value of y(2) is..... (Specify your answer to two digits after the decimal point). [IIT-JAM 2017] AREER SPECTRA

OTHER QUESTIONS

46. The work done by a force in moving a particle of mass m from any point (x, y) to a neighboring point (x+dx, y+dy) is given by $dW = 2xydx + x^2dy$. The work done for a complete cycle around a unit circle is. [IIT-JAM 2008] (a) 0(b) 1 (c) 3 (d) 2π

The value of $\sum_{n=0}^{\infty} r^n \sin(n\theta)$ for r = 0.5 and $\theta = \frac{\pi}{3}$ is. (a) $\frac{1}{\sqrt{3}}$ (b) $\sqrt{\frac{2}{3}}$ (c) $\sqrt{\frac{3}{2}}$ **47.** [IIT-JAM 2014] $(c)\sqrt{\frac{3}{2}}$ $(d)\sqrt{3}$

Consider the coordinate transformation $x' = \frac{x+y}{\sqrt{2}}$, $y' = \frac{x-y}{\sqrt{2}}$. The relation between **48**. the area elements dx'dy' and dxdy is given by dx'dy' = jdxdy. The value of j is.

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:-+919045460409,+919456774737 website:-www.www.careerspectra.in

- and x₂, their velocities are given as $\frac{dx_1}{dt} = x_2 x_1$ and $\frac{dx_2}{dt} = x_1 x_2$, respectively. When they start moving from their initial locations of $x_1(0) = 1$ and $x_2(0) = -1$, the time dependence of both x_1 and x_2 contains a term of the form ea t, where a is a constant. The value of a (an integer) is.....
- **53.** Which one of the following curves correctly represents (schematically) the solution for the equation $\frac{df}{dx} + 2f = 3$: f(0) = 0? [IIT-JAM 2018]

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919456774737 website:- www.www.careerspectra.in

Α

111.1

51.

57.

52.

2

53.

В

54.

49.

55.

В

A,B,D

50.

56.

27

D

Page | 12

А